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Abstract
We present some unexpected links between the spectral properties of ensembles
of large Hermitian and non-Hermitian random matrices, within the formalism of
free random variables. We address the task of adding non-Hermitian random
matrices. To solve this problem, we present a new approach [1] based on
a generalization of the notion of the matrix-valued Green’s function to the
quaternion level, and on an extension of free probability theory, which allows us
to introduce the setting of quaternion-valued free probability theory. We use this
quaternion construction to solve the problem of a non-Hermitian random matrix
of the type H1 + iH2, with Hermitian H1, H2 freely independent. Finally, we
mention conformal mapping relating spectral properties of Hermitian H1 + H2

to spectral properties of the non-Hermitian H1 + iH2 model.

PACS numbers: 05.40.Ca, 05.45.Pq, 02.50.Cw

1. Introduction

Random operators play an important role in many branches of physics [2–5]. Among them,
non-Hermitian random operators constitute an important class. For instance, they represent
Hamiltonians with dissipation [6], Euclidean Dirac operators in the presence of matter [7–9],
PT-symmetric operators in mesoscopic physics [10–13], generators of spectral curves in
certain growth processes [14], to mention only some applications. Non-Hermitian operators
are challenging also from a mathematical point of view and their distinctive feature, which
is that in general their spectra are complex, calls for new methods and insights, since several
standard tools used for manipulations of Hermitian operators cannot be extended into the
non-Hermitian case.

When one studies complicated problems, it is natural to start from some simplifying
assumptions; in the context of operators, these would be small matrices representing operators,
so 2×2, 3×3, etc. Often such problems can be solved exactly, demonstrating expected generic
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features of larger operators, but equally often these solutions are not applicable to a description
of real, much more complicated systems.

In this paper, we however follow a different path, being of great relevance in various
contexts dealing with matrices, namely we choose to work with large matrices. At the
same time, to avoid introducing many parameters, we simplify the problem by assuming some
particular symmetries of large matrices, and knowledge of their few lowest moments, typically
mean and variance, sometimes skewness and curtosis. This approach, called the large-N limit
(where N represents the size of the matrices in question), is the cornerstone of random matrix
theory [2–5], and allows us to obtain many results analytically. Moreover, there exists a natural
expansion parameter 1/N , which makes calculations of finite size corrections meaningful and
tractable. From now, we will consider random operators represented by infinite size random
matrices drawn from some statistical ensemble, and we will be interested in the distribution
of their eigenvalues averaged over the ensemble.

In what follows we discuss only one particular problem, ‘can we say anything about the
spectral properties of the non-Hermitian random matrix H1 + iH2 when we know individual
spectral properties of the Hermitian random matrices H1 and H2, which are assumed to
be independent?’ Since the averaged spectrum of a non-Hermitian large random matrix is
complex and in general fills two-dimensional surfaces on the complex plane, whereas the
averaged spectrum of a Hermitian random matrix is real and fills intervals on the real line,
connection between the two is far from obvious.

To tackle this puzzle we will make use of the solution of an important problem in
Hermitian random matrix theory, which asks about the spectral properties of the (Hermitian)
sum H1 + H2 when the spectral properties of the two summands are known. This problem can
be naturally addressed within a setting called free random variables (FRV) calculus [15, 16],
which can be viewed as an extension of classical probability calculus into the case of non-
commutative random variables, and the addition algorithm will turn out to be conceptually
a direct generalization of the well-known addition procedure in the commutative case. This
passage,

H1,H2 −→ H1 + H2, (1)

will be demonstrated in section 2, where we show how the real eigenvalue spectrum of H1 +H2

can be read from the two respective spectra of H1 and H2 by means of a special function called
the Green’s function, which in this setting is a complex function of a complex variable.

In section 3 we extend this construction to the non-Hermitian case, i.e. we consider the
passage

H1,H2 −→ H1 + iH2. (2)

The generalization is non-trivial as we again have two real spectra as the input, but in the
output we encounter a complex spectrum. We show the solution of this problem by introducing
quaternion-valued FRV for the non-Hermitian case [1]. In particular, the Green’s function
becomes a quaternion function of a quaternion variable; this can be depicted as

Hermitian −→ non-Hermitian
↓ ↓

real spectrum −→ complex spectrum
↓ ↓

complex Green’s function −→ quaternion Green’s function.

(3)

We exemplify this construction with a pedagogical example.
In section 4 we demonstrate another link [17]: the existence of conformal transformation,

allowing us to infer the shape of the support of the complex spectra and the moments of the
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spectra for H1 + iH2 from the singularities of the spectra of H1 + H2. We also present a
pedagogical example.

Section 5 concludes the paper.

2. Addition law for Hermitian random matrices

2.1. Addition law in classical probability calculus

Let us start with the well-known setting of classical probability calculus and consider the
addition problem, i.e. take two real random variables x1 and x2, assume that they are
independent,

〈x1x2〉 = 〈x1〉〈x2〉, (4)

and ask about the probability distribution of their sum, x1+x2. Let us emphasize that the crucial
assumption here is the one of independence, which can also be understood as a prescription
to calculate the mixed moments

〈
xn

1 xm
2

〉
out of properties of the individual moments:

〈x1x1x2x2〉 = 〈x1x2x1x2〉 = 〈x1〉2〈x2〉2. (5)

In the commutative case we can relate the moments of x1 + x2 to separate x1 and x2 using
Newton’s formula,

〈(x1 + x2)
n〉

n!
=

n∑
k=0

〈
xk

1

〉
k!

〈
xn−k

2

〉
(n − k)!

, (6)

which suggests gathering the moments in the following generating function, called the
characteristic function:

gx(z) ≡
∑
n�0

〈xn〉
n!

zn = 〈ezx〉 =
∫

R

dλ ρx(λ) ezλ. (7)

For z = iq, the characteristic function is the Fourier transform of the probability density
function ρx(λ). Relation (6) results in the following simple behaviour of ga1+a2(z):

ln gx1+x2(z) = ln gx1(z) + ln gx2(z), (8)

which means that the logarithm of gx(z) is additive, giving what we can call the classical
addition law. This can be rewritten in terms of densities ρx(λ) as

ρx1+x2(λ
′) =

∫
R

dλ ρx1(λ)ρx2(λ
′ − λ), (9)

which means that adding two independent real classical random variables amounts to perform
the usual convolution of their measure densities:

ρx1+x2 = ρx1 ∗ ρx2 . (10)

Let us note that we have got the addition law straightforwardly in the language of the
moments. We can also define cumulants as the coefficients in the expansion of ln gx(z):

ln gx(z) =
∑
n�1

cx,nz
n; (11)

they thus obey the linearity condition,

cx1+x2,n = cx1,n + cx2,n. (12)
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As an example, we consider the standard Gaussian distribution (with mean zero and unit
variance) for both x1 and x2:

ρx1,2(λ) = 1√
2π

e− λ2

2 ; (13)

we get the characteristic function from (7) to be

gx1,2(z = iq) = e−q2
, (14)

and the addition law (9) gives

ρx1+x2(λ) = 1√
2π

√
2

e− λ2

2(
√

2)2 , (15)

which is again the centred Gaussian distribution, but with variance
√

2.

2.2. Hermitian-free random variables calculus

We would now like to find an analogue of the above construction for the case of non-
commutative random variables; let us moreover start from the Hermitian case, being a direct
extension of the commutative real case. The crucial question which arises is how to define
reasonably the notion of independence and at the same time preserve non-commutativity of
random variables. The answer is given by Voiculescu’s construction of free independence
[15], or freeness for short.

Two Hermitian random matrices H1 and H2 are called free if

〈p1(H1)r1(H2)p2(H1)r2(H2) . . .〉 = 0 if 〈pi(H1)〉 = 〈rj (H2)〉 = 0, (16)

where pi and rj are polynomials. The basic feature of this definition is that consecutive
polynomials should depend on different variables. Note that the expectation values of
Hermitian random matrices used here are defined as

〈H 〉 ≡
〈

1

N
Tr H

〉
cl

, (17)

with 〈. . .〉cl being just some classical (commutative) expectation value, which we take to have
a generic form

〈f (H)〉cl ≡
∫

dH e−N Tr V (H) f (H), (18)

where V (H) is some (usually polynomial) potential.
This definition (16) again gives the rule of how to calculate mixed moments out of the

separate moments (if the matrices are not centred, i.e. if 〈Hi〉 	= 0, we use the trick of renaming
them as H̃ i ≡ Hi − 〈Hi〉); since by definition 〈H̃ 1H̃ 2〉 = 0

〈H1H2〉 = 〈H1〉〈H2〉, (19)

as in (4). However, fourth moments read this time

〈H1H2H1H2〉 = 〈
H 2

1

〉〈H2〉2 + 〈H1〉2〈H 2
2

〉 − 〈H1〉2〈H2〉2, (20)

〈H1H1H2H2〉 = 〈
H 2

1

〉〈
H 2

2

〉
. (21)

Note that the above two moments are different, since now the variables H1 and H2 are non-
commutative. So freeness is in some sense a much more restrictive property than well-known
independence; mixed moments are the combinations of products of the individual moments. It
turns out that it is precisely freeness that extends all the important features of independence to
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the non-commutative case; non-commutative probability together with the notion of freeness
is known under the name of free random variables FRV calculus.

We are now aiming at an addition law for free Hermitian random matrices, just as we
have done in classical probability. The fundamental result in FRV calculus [15] is that one
can introduce (via the so-called non-crossing partitions [16]) an analogue of cumulants, the
so-called free cumulants, which again obey the linearity condition,

kH1+H2,n = kH1,n + kH2,n. (22)

The point is that we cannot simply relate the moments of H1 +H2 to the moments of H1 and H2

separately, as is done in the commutative case, since now mixed moments of centred variables
do not factorize; nevertheless, it is possible to construct other objects, the free cumulants, that
have this property and thus lead to the addition law, but their relation to the moments is far
more involved than before.

This was the essence of the construction. When it is established, what remains is to
construct direct translations of notions from classical probability to FRV. First, we make a
generating function of the moments, like we did for introducing a characteristic function (7).
Here it is convenient to choose such a function of the form

GH (z) ≡
∑
n�0

〈Hn〉
zn+1

= 1

N

〈
Tr

1

z1N − H

〉
cl

, (23)

which is called the Green’s function. Similarly, as we gathered all the cumulants in the
logarithm of the characteristic function in (11), we can encode all the free cumulants in terms
of a single function called Voiculescu’s R-transform:

RH(z) ≡
∑
n�0

kH,n+1z
n. (24)

(We do not need to put factorial in the denominator as variables do not commute. The shift in
n is introduced for further convenience.) Now we can finally write the FRV addition law:

RH1+H2(z) = RH1(z) + RH2(z). (25)

It is very elegant, but what should worry the reader is that we have mentioned that the
relation between the free cumulants and the moments is very entangled, which might mean
that it is a very tough task to derive RH (z), i.e. the generating function of the free cumulants,
from GH(z), i.e. the generating function of the moments. (On the classical level it is just
a matter of taking logarithm.) Surprisingly enough, there exists a simple resolution of this
problem, namely if we slightly redefine the R-transform,

BH(z) ≡ RH(z) +
1

z
, (26)

we get the fundamental relation

BH(GH(z)) = GH(BH(z)) = z, (27)

i.e. the function B(z) = R(z) + 1/z is the functional inverse of the Green’s function. We
call it Blue’s function, after Tony Zee who proposed this name and popularized FRV among
the physicists [18]. Once we have the Green’s function, i.e. we know the moments, it is
straightforward to get Blue’s function, i.e. the free cumulants, which are additive. Let us also
rewrite the addition law (25) in the language of Blue’s function,

BH1+H2(z) = BH1(z) + BH2(z) − 1

z
. (28)

So the algorithm of adding two free Hermitian random matrices may be summarized as
follows:
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• Assuming that we can construct the Green’s functions GH1(z) and GH2(z), we obtain
Blue’s functions BH1(z) and BH2(z) by the functional inversion (27).

• It amounts to apply the addition law (28) to get BH1+H2(z).
• Finally, we again invert it functionally to find GH1+H2(z).

Let us recall how to use the Green’s function to obtain spectral properties of H. The
fundamental problem in random matrix theory is to find the averaged distribution of the
eigenvalues λi of H,

ρH (λ) = 1

N

〈
N∑

i=1

δ(λ − λi)

〉
cl

. (29)

The Green’s function can be easily used to reconstruct this density according to

ρH (λ) = − 1

π
lim
ε→0+

ImGH(λ + iε), (30)

which stems from the use of the well-known formula 1/(λ + iε) = pv1/λ − iπδ(λ). Hence
the eigenvalues density can be read out of the discontinuities of the imaginary part of the
Green’s function. In particular, for the addition of two Hermitian matrices, the above addition
algorithm constitutes at the level of densities a generalization of the convolution (10), called
the additive free convolution,

ρH1+H2 = ρH1 � ρH2 . (31)

As a pedagogical example, let us consider the case of Gaussian randomness, which at the
level of Hermitian random matrices is known as Gaussian unitary ensemble (GUE), defined
by the potential (see (17), (18))

V (H) = H 2. (32)

In the large-N limit, the Green’s function (23) is calculable analytically by the saddle-point
method [2] with the result

GH (z) = 1

2

(
z −

√
z2 − 4

)
. (33)

Its singularities form the single cut [−2, 2] on the real line, and we recover from (30) the
seminal Wigner’s semicircle law [19],

ρH (λ) = 1

2π

√
4 − λ2. (34)

The Wigner’s semicircle law constitutes a matrix analogue of the Gaussian distribution. Now
let us pick two GUE matrices, H1 and H2, and try to add them according to the above FRV
algorithm, which is an analogue of what we have done in subsection 2.1. We substitute
z → B(z) and we use formula (27) to get easily the functional inversion of the Green’s
function,

BH1,2(z) = z +
1

z
, (35)

then we exploit the FRV addition law (28) to obtain

BH1+H2(z) = 2z +
1

z
, (36)

and again invert it functionally,

GH1+H2(z) = 1

4

(
z −

√
z2 − 8

)
, (37)
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which leads to the eigenvalues density

ρH1+H2(λ) = 1

4π

√
8 − λ2; (38)

this is again the Wigner’s semicircle law, but rescaled by the factor of
√

2, in analogy with
the previous classical computation. (The result RH1+H2(z) = 2z also tells us that only the
second free cumulant kH1+H2,2 = 2 is non-vanishing, which is an expected feature of the
matrix analogue of the centred Gaussian distribution.)

The above example demonstrates that the techniques of FRV calculus offer a powerful
shortcut when we search for the distribution of spectra coming from sums of ensembles. The
addition law can be used regardless of the potential V (H), e.g. for higher order polynomials,
Lévy potentials, non-random ensembles, etc.

We have established the passage (1); let us now use what we have learned here to tackle
the passage (2) on the non-Hermitian level.

3. Addition law for non-Hermitian random matrices

3.1. Introduction

The crucial difference which arises in the non-Hermitian case (we denote an arbitrary non-
Hermitian random matrix by X) is that the eigenvalues of X are complex in general; in
the large-N limit they form two-dimensional domains (‘islands’) on the complex plane, in
contrary to one-dimensional cuts in the Hermitian case. The Green’s function loses its
analyticity, i.e. it is analytic (holomorphic) only outside the eigenvalues’ domains, whereas
in the Hermitian case it is holomorphic everywhere except some one-dimensional cuts; hence
the power series expansion no longer captures the full information about the Green’s function,
and it is exactly its non-holomorphic behaviour that determines the eigenvalues’ distribution
on the two-dimensional supports.

This phenomenon can be easily seen even in the simplest non-Hermitian ensemble, the
Girko–Ginibre one [20, 21], with a complex random matrix X and the Gaussian measure

V (X,X†) = XX†. (39)

It is easy to verify that all the moments vanish, 〈Tr Xn〉 = 0 for n > 0 (note however that
〈Tr(XX†)n〉 	= 0), so expansion (23) would give GX(z) = 1

z
everywhere on the complex plane

which is an incorrect result. The true answer is that GX(z) = 1/z is valid only for |z| > 1,
whereas for |z| < 1 we have the non-holomorphic Green’s function GX(z, z̄) = z̄.

3.2. Electrostatic analogy and regularized Green’s function

We approach this problem by exploiting the analogy to two-dimensional electrostatics [22–26].
Let us define the electrostatic potential,

FX(z, z̄) ≡ 1

N
〈Tr ln((z1N − X)(z̄1N − X†) + ε21N)〉cl, (40)

and note that its Laplacian gives the spectrum of X as a charge density
1

π
∂z∂z̄FX(z, z̄) = ρX(z, z̄) (41)

(this is the Poisson equation), due to the representation of the two-dimensional (complex)
Dirac’s delta,

δ(2)(z) = 1

π

ε2

(|z|2 + ε2)2
. (42)
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We can rewrite (41) by introducing the electric field,

GX(z, z̄) ≡ ∂zFX(z, z̄) = 1

N

〈
Tr

z̄1N − X†

(z1N − X)(z̄1N − X†) + ε21N

〉
cl

, (43)

and the connection with ρX(z, z̄) is now the Gauss’ law,

ρX(z, z̄) = 1

π
∂z̄GX(z, z̄). (44)

We see that there has appeared an additional factor of z̄1N −X† both in the numerator and
denominator, and moreover, the denominator has been regularized by ε21N . This regularized
Green’s function has now profoundly drawn us closer to the solution of our problem. First,
this is because it is defined everywhere, also inside the eigenvalues’ domains, so through it
we have access to the interiors of the domains; however, there it is non-holomorphic. Second,
it provides the eigenvalues’ density via the simple formula (44), which is exactly what we
need. Third, outside the domains we can safely set the regulator ε to zero, which makes the
regularized Green’s function equal to the standard one (23).

The shortcoming of this construction is due to the quadratic structure in the denominator
in (43), in contrast to the linear structure in (23), which jeopardizes practical calculations. To
resolve this obstacle, we take one more step in our construction.

3.3. Matrix-valued Green’s function

Instead of working with the complicated object (43), one can make the following trick [27].
Define the matrix-valued Green’s function as the 2 × 2 matrix

GX(z, z̄) ≡ 1

N

〈
b Tr

(
z1N − X iε1N

iε1N z̄1N − X†

)−1

2N×2N

〉
cl

, (45)

where the block-trace

b Tr

(
A B

C D

)
2N×2N

≡
(

Tr A Tr B

Tr C Tr D

)
2×2

. (46)

Explicitly,

GX(z, z̄) =
(
G11

X (z, z̄) G11̄
X (z, z̄)

G 1̄1
X (z, z̄) G 1̄1̄

X (z, z̄)

)
2×2

, (47)

with

G11
X (z, z̄) = 1

N

〈
Tr

z̄1N − X†

(z1N − X)(z̄1N − X†) + ε21N

〉
cl

= GX(z, z̄), (48)

G 1̄1
X (z, z̄) = G11̄

X (z, z̄) = 1

N

〈
Tr

−iε

(z1N − X)(z̄1N − X†) + ε21N

〉
cl

, (49)

G 1̄1̄
X (z, z̄) = 1

N

〈
Tr

z1N − X

(z1N − X)(z̄1N − X†) + ε21N

〉
cl

= GX(z, z̄). (50)

In particular, we see that the upper left corner of the matrix-valued Green’s function (45)
precisely equals the regularized Green’s function (43).

This block approach now resolves our previous problem of the quadratic denominator.
Indeed, the matrix-valued Green’s function (45) can be re-expressed in the form identical to
that of the usual Green’s function (23) but on the matrix level,

GX(z, z̄) = 1

N

〈
b Tr

1

Zε ⊗ 1N − XD

〉
cl

, (51)
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where

Zε ≡
(

z iε
iε z̄

)
2×2

(52)

is the matrix analogue of the variable z, and

XD ≡
(

X

X†

)
2N×2N

(53)

is the ‘duplicated’ matrix X. The necessity of dealing with 2 × 2 matrices instead of numbers,
exchanging z1N with Zε ⊗ 1N and X with XD is the price we have to pay for linearizing the
denominator. And indeed, now the denominator is linear in XD (not in X), so the matrix-
valued Green’s function is completely determined by the knowledge of all the matrix-valued
moments,

〈b Tr Z−1
ε XDZ−1

ε XD . . .〉cl, (54)

again in analogy with the Hermitian case.
We summarize the general properties [27] of the matrix-valued Green’s function. Each

component carries important information about the stochastic properties of the system.

• The 1 1-element (the 1̄1̄-element is just its complex conjugation) is the regularized Green’s
function. We will see that the equations that will be found for GX(z, z̄) always admit two
solutions for its 1 1-element, one of them being valid outside the eigenvalues’ domains
and equal to the standard Green’s function GX(z) (called the holomorphic solution), and
the other valid also inside the domains and equal to the regularized Green’s function
GX(z, z̄) (called the non-holomorphic solution). The second one leads via the Gauss’
law (44) to the eigenvalues’ density. The first one is not spurious, as one may now
wonder, but it represents the generating function for the moments of X [28], so although
it cannot reproduce the spectrum of the eigenvalues of X (which calls for the usage of the
non-holomorphic sector), it still provides important information about X.

• It is curious that also the off-diagonal elements, 11̄ and 1̄1, have an interesting
interpretation [29]. Namely, their product,

CX(z, z̄) ≡ G11̄
X (z, z̄)G 1̄1

X (z, z̄), (55)

represents the correlator between left and right eigenvectors of X, introduced in [30]

1

N

〈
N∑

i=1

(Li |Li)(Ri |Ri)δ
(2)(z − λi)

〉
cl

= − 1

π
CX(z, z̄). (56)

In particular, it allows us to find the shape of the bordering ‘coastline’ of the eigenvalues’
‘islands’, since on the borderline that correlator must vanish, which gives us the equation
of the borderline of the eigenvalues’ domains,

CX(z, z̄) = 0. (57)

A similar approach, discussed at this workshop by Joshua Feinberg, under the name
‘Hermitization method’ [31–33], uses basically an alternative representation for the matrix
structure of the regularized Green’s function,

G̃X(z, z̄) ≡ 1

N

〈
b Tr

(
1N z1N − X

z̄1N − X† −ε21N

)−1

2N×2N

〉
cl

, (58)

which is Hermitian and admits to use well-established Hermitian methods; both versions lead
to similar results.
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z
zQ

Figure 1. (a) Hermitian case (left), real spectral function obtained from approaching cuts on a
complex plane; (b) Non-Hermitian case (right), complex spectral function from approaching the
non-analytical region from ‘orthogonal’ directions in quaternion space.

The presented construction has allowed considerable progress in analysing non-Hermitian
ensembles. In particular, it has led to the generalization of the concept of the Blue’s function
for non-Hermitian random matrices, as first proposed in [34] and confirmed in [31, 32]. This
extension has been defined as a matrix-valued function of a matrix-valued variable that satisfies

BX(GX(z, z̄)) = Zε. (59)

However, it was not entirely clear how to construct explicitly this function in full generality,
and often some additional insight, coming from diagrammatic methods was necessary. In the
next subsection we will circumvent this obstruction by introducing the so-called quaternion
approach [1].

3.4. Quaternion Green’s and Blue’s functions

In the Hermitian case, working with the complex Green’s function allowed us to infer
real spectral distributions from the discontinuities on the complex plane, as visualized in
figure 1(a). It is tempting to find a similar method in the non-Hermitian case of complex
spectra. A natural generalization is the algebra of quaternions; even though such speculations
appeared in the literature [32], an explicit realization appeared only very recently [1].

Schematically, such a scenario is visualized in figure 1(b); to find the complex eigenvalues’
distribution, we approach two sides of complex eigenvalues domain from ‘orthogonal’ (in the
quaternion space) directions to the complex plane. Actually, a specific realization can be
naturally achieved by a straightforward generalization of the matrix-valued Green’s function
(43); from now on let us call the quaternion Green’s function the object

GX(Q) ≡ 1

N

〈
b Tr

1

Q ⊗ 1N − XD

〉
cl

, (60)

where Q is an arbitrary quaternion,

Q =
(

a ib̄
ib ā

)
2×2

= x012 + i�x · �σ (61)

(here σi are the usual Pauli matrices and a = x0 + ix3, b = x1 + ix2). This defines GX as a
quaternion function of a quaternion variable.

The difference to the original meaning of this notion is that we have replaced Zε by a
general quaternion Q thus promoting GX to be a function of Q. Particularly, for Q = Zε

we arrive at the former meaning. The basic idea of the quaternion extension is that GX has
non-trivial properties as a function of Q, which cannot be seen when restricted to the case of
Q = Zε . In particular, the FRV calculus becomes simpler in the non-Hermitian case, since to
invert functionally the quaternion Green’s function, i.e. to find the quaternion Blue’s function,

GX(BX(Q)) = BX(GX(Q)) = Q. (62)
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For any quaternion Q, we can utilize algebraic properties of the quaternions. Accordingly, the
quaternion addition law holds [1],

BX1+X2(Q) = BX1(Q) + BX2(Q) − 1

Q
, (63)

for any Q and two non-Hermitian free random matrices X1 and X2.

3.5. Practical use of quaternion Green’s and Blue’s functions

Having established the foundations of the quaternion approach, we can ask the question of their
practical advantages. Indeed, it is obvious that for example to pass from H1,H2 to H1 + iH2,
see (2), we will need not only the quaternion addition law (63), but also a tractable form of
the quaternion Blue’s function of a Hermitian random matrix H, as well as a prescription to
compute this function for iH provided it is known for H.

Both these problems have been solved [1] and we just present final results. So the
quaternion Green’s function for an arbitrary Hermitian random matrix H reads

GH (Q) = γH (q, q̄)12 − γ ′
H (q, q̄)Q†, (64)

where q = x0 + i|�x| and q̄ = x0 − i|�x| are two conjugated eigenvalues of the quaternion
Q (61), whereas γH and γ ′

H are two scalar functions depending only on q and q̄, and given
explicitly by

γH (q, q̄) ≡ qGH (q) − q̄GH (q̄)

q − q̄
, (65)

γ ′
H (q, q̄) ≡ GH(q) − GH (q̄)

q − q̄
. (66)

This formula can be inverted functionally, which leads to a symmetrical result for the quaternion
Blue’s function of H,

BH (Q) = βH (q, q̄)12 − β ′
H (q, q̄)Q†, (67)

where βH and β ′
H are similar to γH and γ ′

H but with GH in the place of BH :

βH (q, q̄) ≡ qBH (q) − q̄BH (q̄)

q − q̄
, (68)

β ′
H (q, q̄) ≡ BH(q) − BH(q̄)

q − q̄
. (69)

The second problem can be solved as well and gives the scaling properties of the quaternion
Green’s and Blue’s functions,

GgX(Q) = GX

((
1
g

1
ḡ

)
Q

)(
1
g

1
ḡ

)
, g ∈ C\{0}, (70)

and

BgX(Q) =
(

g

ḡ

)
BX

(
Q

(
g

ḡ

))
, g ∈ C\{0}. (71)

These two relations generalize the well-known scaling properties of standard (in Hermitian
RMT) Green’s and Blue’s functions,

GgX(z) = 1

g
GX

(
1

g
z

)
, g ∈ C\{0}, (72)
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and

BgX(z) = gBX(gz), g ∈ C\{0}. (73)

Now the non-Hermitian problem is to large extent reduced to Hermitian random matrix
theory: knowing the Hermitian inputs of our problem, i.e. the standard Green’s functions
(23) GH1(z) and GH2(z), we can derive the full quaternion Green’s function (60), using the
quaternion addition law (63) and the explicit formulae (64), (67), (70) and (71), so

GH1(z),GH2(z) −→ GH1+iH2(Q). (74)

The algorithm is just as follows:

• Given are GH1(z) and GH2(z). This is the Hermitian RMT input.
• Compute BH1(Q) and BH2(Q) using (67).
• Compute BiH2(Q) from BH2(Q) and (71) with g = i.
• Use the quaternion addition law (63) to get BH1+iH2(Q).
• Invert it functionally according to (62) to obtainGH1+iH2(Q). Actually, it is not necessary to

invert it for all Q, it is sufficient to do the inversion at this moment for Q = Z = diag(z, z̄),
as the upper left corner of this 2 × 2 matrix is the desired regularized Green’s function
(43). Finally, one recovers the two-dimensional eigenvalues’ density ρH1+iH2(z, z̄)

from (44).

This algorithm is plausible, but one can worry how to perform in general a functional
inversion of a rather complicated quaternion function of a quaternion variable. This procedure
was reduced to even simpler algebraic structure [1]. We quote here the result, pointing at the
simplifications achieved.

• Write two equations

BH1(g) = x +
m

g
, (75)

BH2(g
′) = y +

1 − m

g′ , (76)

where z ≡ x + iy, with three unknown quantities, complex g, g′ and real m. Express g

and g′ via m.
• Compute m from the third equation,

|g| = |g′|. (77)

• Derive g + ḡ, g′ + g′ and |g|2 from the above two steps.
• The non-holomorphic Green’s function and the correlator between left and right

eigenvectors for H1 + iH2 are given by

GH1+iH2(x, y) = g + ḡ

2
− i

g′ + g′

2
, (78)

CH1+iH2(x, y) =
(

g + ḡ

2

)2

+

(
g′ + g′

2

)2

− |g|2. (79)

The borderline’s equation is(
g + ḡ

2

)2

+

(
g′ + g′

2

)2

= |g|2. (80)

Quaternion approach is quite useful from operational point of view, at least in the case of
H1 + iH2; it also works successfully in other cases, e.g. in the case of models involving unitary
matrices [35].
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3.6. Example: Girko–Ginibre model

As a pedagogical example let us come back to the Girko–Ginibre model mentioned in
subsection 3.1, which can be equally well reformulated as an addition H1 + iH2, where
both H1,2 are free GUE matrices (subsection 2.2).

Let us first construct the quaternion functions explicitly from the algorithm, without
referring to its simplified version. We have (35)

BH1,2(z) = z +
1

z
, (81)

hence from (67) we get

BH1,2(Q) = Q +
1

Q
. (82)

Next, we use (71) and obtain

BiH2(Q) = iσ3Qiσ3 +
1

Q
. (83)

The quaternion addition law (63) thus states that

BH1+iH2(Q) = Q + iσ3Qiσ3 +
1

Q
. (84)

Here we substitute Q → GH1+iH2(z, z̄), which gives the 2 × 2 matrix equation(
z 0
0 z̄

)
=

(
G11

X G11̄
X

G 1̄1
X G 1̄1̄

X

)
+

1

DetGX

(
G 1̄1̄

X −G11̄
X

−G 1̄1
X G11

X

)
−

(
G11

X −G11̄
X

−G 1̄1
X G 1̄1̄

X

)
. (85)

The equation in the upper right corner thus reads

G11̄
X

(
2 − 1

DetGX

)
= 0, (86)

which means either

G11̄
X = 0, then G11

X = 1

z
, (87)

or

DetGX = 1

2
, then G11

X = z̄

2
. (88)

We explicitly see two kinds of solutions mentioned above in subsection 3.3, the holomorphic
one and the non-holomorphic one. The matching condition (the solutions match on the
borderline of the islands of eigenvalues),

1

z
= z̄

2
, i.e. x2 + y2 = 2, (89)

gives the borderline of the domains, which here is the circle of radius
√

2. (We got here
the radius

√
2, since we add two Hermitian ensembles, whereas the original Ginibre case

corresponds to adding to symmetric ensembles). Inside it, the eigenvalues’ density can be
found from (44) as

ρH1+iH2(z, z̄) = 1

π
∂z̄

z̄

2
= 1

2π
, (90)

i.e. the complex eigenvalues fill the circle x2 + y2 � 2 with the uniform density 1/2π .
The same result can be obtained from the simplified version of the algorithm mentioned

at the end of the previous subsection. Here let us use for a slightly more general model
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H1 + icH2, with some coupling constant c ∈ R, to be used in the next section. The
equations (75), (76) are quadratic, g2 − xg + 1 − m = 0, c2g′2 − yg′ + m = 0, so Vieta’s rules
yield g + ḡ = x, |g|2 = 1−m, g′ +g′ = y

c2 , |g′|2 = m
c2 , so (77) is 1−m = m

c2 , hence m = c2

1+c2 ,

which finally leads to GH1+icH2(x, y) = 1
2

(
x − i y

c2

)
and CH1+icH2(x, y) = 1

4

(
x2 + y2

c4

) − 1
1+c2 .

In particular, the borderline’s equation reads x2 + y2

c4 = 4
1+c2 , which is an ellipse, reducing for

c = 1 to a circle. Here the use of the equations (75)–(80) is only a minor advantage; however
for more involved models this procedure simplifies practical calculations considerably.

4. Conformal mapping

Finally, let us present another astonishing link [17] between the Hermitian model H1 + H2

and its non-Hermitian counterpart H1 + iH2, based on the FRV formalism. The existence
of the holomorphic and non-holomorphic solutions provides a powerful way to evaluate the
domains of eigenvalues of H1 + iH2; namely, the borderlines of these supports can be derived
in a general way using a conformal transformation that maps the cuts of the Hermitian
ensemble onto the boundaries of its non-Hermitian analogue. The idea is to use the standard
(Hermitian RMT based) addition law (28) to the non-Hermitian case, but restricted to the
domains of analyticity of both ensembles. Let us just consider the case of arbitrary H1 ≡ M

and H2 ≡ cH ≡ cGUE, c ∈ R being a coupling constant. The addition law (28) for M + H ,
together with (35) and (73), says that

BM+cH (u) = c2u + BM(u). (91)

Now we use the same addition law for M + icH , using the scaling property (73),

BM+icH (u) = −c2u + BM(u). (92)

(Note that this is a consequence of the group property for R-transforms, RH(u) + RiH (u) = 0,
i.e. the anti-Hermitian GUE nullifies the Hermitian GUE in the holomorphic domain.) These
two equations yield

BM+icH (u) = BM+cH (u) − 2c2u. (93)

Now let us substitute here u → GM+H (z). Then

BM+icH (GM+cH (z)) = z − 2c2GM+cH (z). (94)

Let w be the image of z such that GM+icH (w) = GM+cH (z). Then

w = z − 2c2GM+cH (z). (95)

This equation provides a conformal transformation mapping the holomorphic domain of the
Hermitian ensemble M + cH , i.e. the complex plane except the cuts, onto the holomorphic
domain of the non-Hermitian ensemble M + icH , i.e. the complex plane minus the domains,
giving thus an efficient alternative method of dealing with the borderline of the domain of
M + icH .

As an example, let us take M = GUE too. We thus have

BM+cH (z) = (c2 + 1)z +
1

z
, i.e. GM+cH (z) = z −

√
z2 − 4(c2 + 1)

2(c2 + 1)
, (96)

so in particular the eigenvalues fill the cut [−2
√

c2 + 1, 2
√

c2 + 1]. This cut can be mapped to
the borderline of the eigenvalues’ domain of M + icH (which we want to find via (95)). We
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z w

Figure 2. Conformal mappings for the case of Ginibre ensemble. The shaded regions represent
the holomorphic domains.

already know from the end of the previous subsection that it is the ellipse x2 + y2

c4 = 4
1+c2 , but

we want to recover this in another way. The conformal map reads

w = 1

c2 + 1

(
z + c2

√
z2 − 4(c2 + 1)

)
. (97)

We see that for u = t ± iε and t ∈ [−2
√

c2 + 1, 2
√

c2 + 1] the image w(z) is exactly the
ellipse x2 + y2

c4 = 4
1+c2 . (See figure 2, where coupling c is equal to one.)

Therefore, exploiting only the analytical properties of the holomorphic solution, we are
able to infer the shape of the domain of eigenvalues. Note that this method cannot provide the
density of eigenvalues inside the domain, since it is solely based on holomorphic properties.
On the other hand, this method allows us to derive the moments of the distribution, since
holomorphic and non-holomorphic Green’s functions match at the boundary. In our example
(with c = 1), the holomorphic Green’s function reads GM+H (z) = 1/z, hence all the moments
vanish; from the exact solution we know that indeed this is the case, the distribution is uniform,
so all the moments vanish. The opposite reasoning is not correct; for the two-dimensional
domain we cannot infer the spectral distribution from the knowledge of all the moments.

5. Conclusions and prospects

In this paper we have pointed links between two very different systems: the random Hermitian
system viewed as a ‘sum’ H = H1 + H2 and the random non-Hermitian system viewed as a
‘sum’ X = H1 + iH2. When one thinks about H1 and H2 as Hamiltonians, the existence of
any relations between the spectra of H and X is quite surprising. The connections presented
here have emerged from the formalism of free random variables. Despite the foundations of
the FRV were laid 15 years ago, this rich mathematical structure is not yet fully understood.
We have exploited in this paper the analogy between classical probability theory and FRV,
viewed as a matrix-valued, therefore non-commutative counterpart of the classical probability
theory. It is tempting to ask whether FRV variables can also generate evolution in some
external parameter (‘time’), alike probabilistic distributions generate stochastic differential
equations, paving therefore the road to ‘free’ statistical physics or ‘free’ quantum mechanics.
These fundamental questions concerning dynamics of FRV are currently being addressed by
mathematicians [36].

Another open problem is the connection between FRV and PT Hamiltonians. It is
encouraging that certain class of PT Hamiltonians, corresponding to so-called Hatano–Nelson
localization [10], was attempted to be formulated in the FRV formalism [12, 13]. We hope
that this paper will trigger further studies of this problem.
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